HPLC Validation and Q/A of 62Cu-PTSM, 62Cu-ATSM, and 62Cu-ETS Synthesized by 62Zn/62Cu Microgenerator Kit

Z. Yue, A. Stephens, and J. L. Lacy
Proportional Technologies, Inc.
Houston, TX
Introduction

- ^{62}Cu labeled bis(thiosemicarbazone) PET agents
 - $^{62}\text{CuPTSM}$
 - $^{62}\text{CuETS}$
 - $^{62}\text{CuATSM}$

- PTI’s $^{62}\text{Cu}/^{62}\text{Zn}$ microgenerator with interchangeable instant synthesis kit
Structure Identity Validation using HPLC

• Media selection
 – Common reverse phase C-18 column
 • Good separation
 • Irreversible binding of Ionic $^{62}\text{Cu}^{2+}$ to column media
 – Reverse phase Oasis® HLB column (Waters™)
 • Good separation
 • Much less binding of Ionic $^{62}\text{Cu}^{2+}$ to column
Structure Identity Validation using HPLC

HPLC conditions:
Shimadzu Vp system, with radiation detector, 35%ACN/ 65% 25mM NaOAc buffer (pH=4.7), Isocratic mode (1 mL/min), 40°C,
Amount injected:
Cu-ETS 0.20 µg
Cu-PTSM 0.20 µg
Cu-ATSM 0.20 µg
^{62}Cu-ETS 10.0 µCi
^{62}Cu-PTSM 10.0 µCi
^{62}Cu-ATSM 10.0 µCi

Reverse Phase: Oasis® HLB column

UV/Vis Chromatogram –462nm

Radiation Chromatogram

Cu-ETS
Cu-PTSM
Cu-ATSM

^{62}Cu-ETS
^{62}Cu-PTSM
^{62}Cu-ATSM
Structure Identity Validation using HPLC

UV/Vis Chromatogram –462nm

- Cu-ATSM
- Cu-PTSM
- Cu-ETS
- Solvent front

Radiation Chromatogram

- 62Cu-ATSM
- 62Cu-PTSM
- 62Cu-ETS

HPLC conditions:
Shimadzu Vp system, with radiation detector, 20%EtOH/ 80% hexane, Isocratic mode (1 mL/min), 40°C
Amount injected:
Cu-ETS 0.23 µg
Cu-PTSM 0.20 µg
Cu-ATSM 0.20 µg
62Cu-ETS 3.0 µCi
62Cu-PTSM 1.0 µCi
62Cu-ATSM 2.0 µCi

Normal Phase:
Nova-Pak® column

Sample Preparation:
Octanol:Hexane extraction
Radiochemical Purity Determination

• Activity recovery in HPLC column eluate

<table>
<thead>
<tr>
<th></th>
<th>Recovery % (Germanium detector)</th>
<th>Recovery % (Well detector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{62}\text{Cu-ETS}$</td>
<td>101.8 ± 2.3</td>
<td>–</td>
</tr>
<tr>
<td>$^{62}\text{Cu-PTSM}$</td>
<td>99.7 ± 1.5</td>
<td>99.2 ± 2.5</td>
</tr>
<tr>
<td>$^{62}\text{Cu-ATSM}$</td>
<td>98.8 ± 1.3</td>
<td>101.4 ± 1.0</td>
</tr>
</tbody>
</table>
Radiochemical Purity Determination

- Calibration of Radioflow detector (Berthold) attached with Cerenkov counting cell
 - Dead time correction: paralyzable model
 \[m_{\text{observed}} = n_{\text{true}} \cdot \exp(-n_{\text{true}} \cdot t_{\text{au}}) \]
 - Better linearity of detector response to dose injected
 - Higher method sensitivity

\[R^2 = 0.99839 \] without dead time correction
\[R^2 = 0.99995 \] with dead time (\(\tau = 2.8 \mu \text{s} \)) correction
Radiochemical Purity Determination

- Radiochemical purity for ^{62}Cu PET agents produced via PTI instant synthesis Kit is usually measured >95%

Assay Conditions:
- Reverse Phase Oasis® HLB column
- Shimadzu Vp system
- Calibrated Radioflow detector
- 25% ACN/75% 25mM NaOAc buffer for ^{62}Cu-ETS
- 35% ACN/65% 25mM NaOAc buffer for ^{62}Cu-PTSM
- 45% ACN/55% 25mM NaOAc buffer for ^{62}Cu-ATSM
- Isocratic mode (1 mL/min) at 40°C
- ^{62}Cu injected: <2.5Ci

Representative decay corrected radiochromatogram for micro-generator produced ^{62}Cu-ETS
Radiochemical Purity Determination

- HPLC performance under extreme circumstances
 - Reproducible retention times
 - Reliable separation performance

- 62Cu-ETS
- 62Cu-PTSM
- 62Cu-ATSM
Radiochemical Purity Determination

- Comparison of HPLC and Rapid Cartridge Assay

\[y = 1.002x \quad R^2 = 0.973 \]

\[y = 1.001x \quad R^2 = 0.960 \]

\[y = 1.006x \quad R^2 = 0.988 \]
Conclusion

- Results from two HPLC separation modes confirm that 62Cu labeled bis(thiosemicarbazone) compounds synthesized via PTI instant synthesis kit have the same molecular structures as the cold references.
- HPLC assay of radiochemical purity is accurate and reliable.
- Rapid Oasis® cartridge assay is competent for Quality Assurance at clinic site.